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Abstract

In the analog VLSI implementation of neural systems, it is sometimes convenient to build
lateral inhibition networks by using a locally connected on-chip resistive grid to
interconnect active elements. A serious problem of unwanted spontaneous oscillation
often arises with these circuits and renders them unusable in practice. This paper reports
on criteria that guarantee these and certain other systems will be stable, even though the
values of designed elements in the resistive grid may be imprecise and the location and
values of parasitic elements may be unknown. The method is based on a rigorous,
somewhat novel mathematical analysis using Tellegen’s theorem from electrical circuits
and the idea of a Popov multiplier from control theory. The criteria are local in that no
overall analysis of the interconnected system is required for their use, empirical in that they
involve only measurable frequency response data on the individual cells, and robust in that
they are insensitive to network topology and to unmodelled parasitic resistances and
capacitances in the interconnect network. Certain results are robust in the additional sense
that specified nonlinear elements in the grid do not affect the stability criteria. The results
are designed to be applicable, with further development to complex and incompletely
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Abstract

In the analog VLSI implementation of neural systems, it is sometimes
convenient to build lateral inhibition networks by using a locally connected
on-chip resistive grid to interconnect active elements. A serious problem
of unwanted spontaneous oscillation often arises with these circuits and
renders them unusable in practice. This paper reports on criteria that
guarantee these and certain other systems will be stable, even though the
values of designed elements in the resistive grid may be imprecise and the
location and values of parasitic elements may be unknown. The method is
based on a rigorous, somewhat novel mathematical analysis using Tellegen’s
theorem [1] from electrical circuits and the idea of a Popov multiplier [2,3]
from control theory. The criteria are local in that no overall analysis of
the interconnected system is required for their use, empirical in that they
involve only measurable frequency response data on the individual cells, and
robust in that they are insensitive to network topology and to unmodelled
parasitic resistances and capacitances in the interconnect network. Certain
results are robust in the additional sense that specified nonlinear elements
in the grid do not affect the stability criteria. The results are designed
to be applicable, with further development, to complex and incompletely
modelled living neural systems.




I. Introduction

In the VLSI implementation of neural systems, it is convenient to build
lateral inhibition and certain other types of networks by locally intercon-
necting active cells through an on-chip resistive grid. Linear resistors fab-
ricated in, e.g., polysilicon, could yield a very compact realization, and
nonlinear resistive grids, made from MOS transistors, have been found use-
ful for image segmentation [4]. Networks of this type can be divided into
two classes: feedback systems and feedforward-only systems. In the feed-
forward case one set of amplifiers imposes signal voltages or currents on
the grid and anotler set reads out the resulting response for subsequent
processing, while the same amplifiers both “write to” the grid and “read
from” it in a feedback arrangement. Feedforward networks of this type are
inherently stable, but feedback networks need not be.

A practical example is one of Mahowald and Mead’s retina chips [5,6]
that achieve edge enhancement by means of lateral inhibition through a
resistive grid. Figure la shows a single cell in an earlier version of this chip,
and Fig. 1b illustrates the network of interconnected cells. Experiment has
shown that the individual cells in this system are open-circuit stable and
remain stable when the output of amplifier # 2 is connected to a voltage
source through a resistor, but the interconnected system oscillates so badly
that the earlier design is scarcely usable!{7]. Such oscillations can readily
occur in most resistive grid circuits with active elements and feedback,
even when each individual cell is quite stable. Analysis of the conditions of
instability by conventional methods appears hopeless, since the number of
simultaneously active feedback loops is enormous.

This paper reports a practical design approach that rigorously guaran-
tces such a system will be stable if the active cells meet certain criteria.
The work begins with the naivé observation that the system would be stable
if we could design each individual cell so that, although internally active,
it acts like a passive system as seen from the resistive grid. The design
goal in that case would be that each cell’s output impedance should be a
positive-real [2,3,8] function. This is sometimes possible in practice; we will

The later design reported in [5] avoids stability problems altogether, at a small cost
in performance, by redesigning the circuits to passively sense the grid voltage in a “feed-
torward” style as described above.




show that the original network in Fig. la would satisfy this condition in
the absence of certain parasitic elements. Furthermore, it is a condition
one can verify experimentally by frequency-response measurements.

It is obvious that a collection of cells that appear passive at their ter-
minals will form a stable system when interconnected through a passive
medium such as a resistive grid, and that the stability of such a system is
robust to perturbations by passive parasitic elements in the network. The
work reported here goes beyond that observation to provide i) a demonstra-
tion that the passivity or positive-real condition is much stronger than we
actually need and that weaker conditions, more easily achieved in practice,
suffice to guarantee robust stability of the linear active network model, and
ii) an extension of the analysis to the nonlinear domain that furthermore
rules out sustained large-signal oscillations under certain conditions. A key
feature of the integrated circuit environment that makes these results ap-
plicable is the almost total absence of on-chip inductance. While the cells
can appear inductive, as in Fig. 3¢, the absence of inductance in our grid
models makes these theorems possible.

Note that these results do not apply directly to networks created by
interconnecting neuron-like elements, as conventionally described in the
literature on artificial neural systems. The “neurons” in, e.g., a Hopfield
network (9] are unilateral 2-port elements in which the input and output
are both voltage signals. The input voltage uniquely and instantaneously
determines the output voltage of such a neuron model, but the output
can only affect the input via the resistive grid. In contrast, the cells in
our system are 1-port electrical elements (temporarily ignoring the optical
input channel) in which the port voltage and port current are the two
relevant signals, and each signal affects the other through the cell’s internal
dynamics (modelled as a Thevénin equivalent impedance) as well as through
the grid’s response.

It is apparent that uncontrolled spontaneous oscillation is a potential
problem in living neural systems, which typically also consist of active ele-
ments arranged in feedback loops. Biological systems have surely solved the e

same problem we attack in this paper. It is reasonable to believe that sta- 0
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in the face of wide component variation and the presence of parasitic net-
work elements, 2) reliance on empirical data rather than anything we would
recognize as a theory or analytic method, 3) stability strategies based on
predominantly local information available to each network element.

Several reports on this work have appeared and will appear in [10-14]
during its development; a longer tutorial exposition will be given in the
second printing of [6)].

II. The Linear Theory

Terminology

The output tmpedance of a linear system is a measure of the voltage
response due to a change in output current while the input (light intensity
in this case) is held constant. This standard electrical engineering concept
will play a key role here. Figure 2a illustrates one experimental method
for measuring the output impedance, and Fig. 2b is a standard graphical
representation of an impedance, known as a Nyquist diggram. Similar plots
have been used in experimental physiology (15].

In the context of this work, an impedance is said to be positive-real
[2,3,8] if it is stable (i.e., has no poles or zeroes in the right-half plane) and
its Nyquist diagram lies entirely in the right-half plane (i.e., in the language
of complex numbers, Re{Z(iw)} 2> 0 for all purely sinusoidal frequencies
w). Figure 2a is an example, while the system represented in Fig. 4 is
stable but not positive-real.

A deep link between positive-real functions, physical networks and pas-
sivity is established by the classical result in linear circuit theory which
states that H(s) is positive-real if and only if it is possible to synthesize
a 2-terminal network of positive linear resistors, capacitors, inductors and
ideal transformers that has H(s) as its driving-point impedance [8].

This work was originally motivated by the following linear analysis of a
mode] for the circuit in Fig. la. For an initial approximation to the output
impedance of the cell we use the elementary model shown in Fig. 3a for the
amplifiers and simplify the circuit topology within a single cell as shown in
Fig. 3b.

Straightforward calculations show that the output impedance is given
by




17\ — -1 gmy Gma Ro, 1
Z (8) - [g"'? + R°2 + SCOQ] + (1 + 8R01Cox) . ( )
This is a positive-real impedance that could be realized by a passive
network of the form shown in Fig. 3c, where

Ry = (gm, + Ra—gl Ry = (gmlgmthn)—l’ and L = C,, [/ gmy gm, - (2)

Of course this model is oversimplified, since the circuit does oscillate.
Transistor parasitics and layout parasitics cause the output impedance of
the individual active cells to deviate from the form given in eqs. (1) and
(2), and any very accurate model will necessarily be quite high order. The
following theorem shows how far one can relax the positive-real condition
and still guarantee that the entire network is robustly stable. It obviously
applies to a much wider range of linear networks than has been discussed
here.

A linear network is said to be stable if for any initial condition the
transient response converges asymptotically to a constant.

Theorem 1

Consider the class of linear networks of arbitrary topology, consisting of any
number of positive 2-terminal resistors and capacitors and of N lumped
linear impedances Z,(s),n = 1,2,...,N, that are open- and short-circuit
stable in isolation, i.e., that have no poles or zeroes in the closed right-half
plane. Every such network is stable if at each frequency w > 0 there exists
a phase angle §(w) such that 0 > 6(w) 2 —90° and |£Z,(iw) — 6(iw)] <
90°,n =1,2,...,N.

An equivalent statement of this last condition is that the Nyquist plot
of each cell’s output impedance for w > 0 never intersects the 2nd quadrant
of the complex plane (Fig. 4 is an example), and that no two cells’ output
impedance phase angles can ever differ by as much as 180°. If all the active
cells are designed identically and fabricated on the same chip, their phase
angles should track fairly closely in practice, and thus this second condition
is a natural one.




The theorem is intuitively reasonable and serves as a practical design
goal. The assumptions guarantee that the cells cannot resonate with one
another at any purely sinusoidal frequency s = jw since their phase angles
can never differ by as much as 180°, and they can never resonate with the
resistors and capacitors since they can never appear simultaneously active
and inductive at any sinusoidal frequency. A more advanced argument [14]
shows that exponentially growing instabilities are also ruled out.




III. Stability Result for Networks with Nonlinear Resistors and
Capacitors

The previous results for linear networks can afford some limited insight
into the behavior of nonlinear networks. If a linearized model is stable,
then the equilibrium point of the original nonlinear network must be locally
stable. But the result in this section, in contrast, applies to the full nonlinear
circuit model and allows one to conclude that in certain circumstances the
network cannot oscillate or otherwise fail to converge even if the initial
state is arbitrarily far from the equilibrium point. Figure 4 introduces the
Popov criterion, which is the basis of the following theorem. This is the
first nonlinear result of its type that requires no assumptions on the network
topology.

Theorem 2

Consider any network consisting of nonlinear resistors and capacitors and
linear active cells with output impedances Z,(s),n = 1,2,...,N. Suppose
a) the nonlinear resistor and capacitor characteristics, i; = g;(v;)
and ¢; = hi(vi), respectively, are monotone increasing continuously
differentiable functions, and
b) the impedances Z,(s) all satisfy the Popov criterion for some com-
mon value of 7 > 0. ‘

Then the network is stable in the sense that, for any initial condition
at ¢t =0,

[T Tawm <o

0
all resistors (3)
and capacitors
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FIGURE CAPTIONS

Figure 1. a) This photoreceptor and signal processor circuit, using
two MOS amplifiers, realizes spatial lateral inhibition and temporal
sharpening by communicating with similar cells through a resistive
grid. The resistors will often be nonlinear by design. b) Intercon-
nection of cells through a hexagonal resistive grid. Cells are drawn
as 2-terminal elements with the _ower supply and signal output lines
suppressed. The voltage on the capacitor in any given cell is affected
both by the local light intensity incident on that cell and by the capac-
itor voltages on neighboring cells of identical design. The necessary
ingredients for instability — active elements and signal feedback —
are both present in this system. c) Grid resistors with a nonlinear
characteristic of the form ¢ = tanh(v) can be useful in image segmen-
tation [4]. '

Figure 2. a) Simplified experimental measurement of the -output
impedance of a cell. A sinusoidal current i = Acos(wt) is injected into
the output and the voltage response v = Bcos(wt + ¢) is measured.
The impedance, which has magnitude B/A and phase ¢, is typically
treated as a complex number Z(iw) that depends on the frequency
w. b) Example of the Nyquist diagram of an impedance. This is a
plot in the complex plane of the value of the impedance, measured or
calculated at purely sinusoidal frequencies, ranging from zero upward
toward infinity. It is not essential to think of Nyquist diagrams as
representing complex numbers: they are simply polar plots in which
radius represents impedance magnitude and angle to the horizontal
axis represents phase. The diagram shown here is the Nyquist plot of
the positive-real impedance in eq. (1).

Figure 3. a) Elementary model for an MOS amplifier. These ampli-
fiers have a relatively high output resistance, which is determined by a
bias setting (not shown). b) Linearity allows this simplification of the
network topology for the circuit in Fig. la without loss of information
relevant to stability. The capacitor in Fig. 1a has been absorbed into
the output capacitance of amp # 2. ¢) Passive network realization of
the output impedance given in eq. (1) for the network in b).
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Figure 4. Nyquist diagram of an impedance that satisfies the Popov
criterion, defined as follows. A linear impedance Z(s) satisfies the
Popov criterion if (1 + 73)Z(s) is positive-real for some 7 > 0. The
“Popov multiplier” (1 + 7s) modifies the Nyquist diagram by stretch-
ing and rotating it counterclockwise for w > 0. The impedance plotted
here is active and thus is not positive-real, but the rotation due to the
(1 + 73) term can make it positive-real for an appropriate value of
7. The Popov criterion is a condition on the linear elements that
is weaker than passivity: active elements satisfying this criterion are
shown to pose no danger of instability even when nonlinear resistors
and capacitors are present in the grid.
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